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On the Error in Pad~ Approximations for Functions

Defined by Stieltjes Integrals*

Yudell L. Luke .

University of Missouri
• Kansas City , Missouri

I. Summary and Introduction -

In a previous paper , the author derived an infinit~ series

representation for the error in the Gaussian quadrature of

fb
I I w(t)f(t,z)dt where w(t) is the weight function and

f(t,z) is known. We suppose that f(t,z) can be represented

by an expansion in series of orthogonal polynomials (q~ (t)}

which is uniformly convergent in [a,b] • Thus, f(t,z)

= Z c~q~~(t) , c~ 
= h~~ J w(t)q~ (t)f(t,z)dt . Then the error

n O  a

can be expressed in the form 
s~ O ~~~~~~~~~~~~~ 

where the 
-

• g~~)t 5 depend only on the properties of q~ (t) . Usually only

one or two terms of the series are needed to achieve a realistic

estimate of the error. Here asymptotic estimates for c~ for

large n are employed. In the present paper , the error analysis -~~~~~~~

analysis is applied to the situation where f(t,z) = (l+t/z)~~ .

In this instance , Gaussian quadrature of I and integrals simply

• *ThjS research was sponsored by the Air Force Office of
Scientific Research under grant 73-2520.
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related to I lead to approximations in z which occupy the

(n ,n+r-l) positions of the Pad€ matrix table for I . Three

important examples are treated . Two examples are generalized to
the case where f(t,z) = (l+t/z)~~

II. Gaussian Quadrature

Let

rb
I(z,a,b) = J w(t)f(t,z)dt (1)

a

where we suppose that w(t) and f(t,z) are integrable over

the path a to b . We consider approximation of (1) by use

of the Gaussian quadrature formula. To this end, let {q~(t)}

be a system of orthogonal polynomials of the form

q~ (t) = 

k=O 
ak f lt (2)

such that

rb
-‘a 

w(t)q~ (t)q~ (t)dt = hnômn (3)

6mn 1 if m = n , and

6~~~~~0 if m � n .  (4)

Let t~ be defined by

= 0 , I = 0,1,... ,n (5)

and put

- 

Anhn 
, A . (6)
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Following Luke [1), Gaussian quadrature of (1) leads to the

formulation

I(z,a,b) = I~ (z~a~b) + E~ (z) , (7)

n
I~ (z~a,b) = Z A. ~f(t1,z) (8)

i=0 1,

• where E~(z) is the remainder which is zero if f(t,z) is a

polynomial in t of degree 5 2n+l . Under the assumption that

f(t ,z) can be expressed as an expansion in the polynomials

(q~(t)} which is uniformly convergent in [a,b] , that is,

f(t,z) = Z c~q~ (t) , (9)
k= 0

• Ck = h~~ f w(t)q~(t)f(t ,z)dt , (10)

then *

E
~
(z) = 

s~ O ~~~~~~~~~~~~ , (11)

where

(n) h~~1 n Afl+k+l ~~~~~~~~~~~~~ 
12a0 0 k=0 Ak a2n+1,n+l

and expressions for g
~~~2~5 , s > 0 , are detailed In the

source cited. There explicit forms for s = 0,1,2 are derived

for the classical orthogonal polynomials of Jacobi , Laguerre,
• Hermite and Bessel,

*~~ j~ references [1,4], the n superscript notation on
was omitted . It should be noted , for example, that the formula
for is not necessarily that for with k replaced by
k+1 . Here we have added the superscript notation to alert the
reader to this situation. 
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I

We also have
-

• Ii d2~~
2f(t,z)

n+]~ ~~ 2n+2 t=e
E (z) = ‘I. ’ 

, a < 0 < b , (13)• It
I. ) •  n+l ,n+l

and clearly E~ (z) 0 if f(t,z) is a polynomial in t of

degree s 2n+l . •

III. Pads Approximations

Let

F(z) = 2: VkZ . (14)
k=0

Let P~ (z) and Q~ (z) be polynomials in z of degree m and

n , respectively , such that

Q~(z)F(z) - P (z) = O(Zm+n+l) (I S)

Then P
~
(z)/Q

~
(z) is the Pads approximation to F(z) which

• occupies the (n,m) position in the Pads matrix table. If

m = n , we have the main diagonal entries and if in n-i , we

have the first subdiagonal entries. For further information on

Pad6 approximations with references and numerous examples , see

[2,3]~ See also references [6-9] ahead.

*In 12), the first subdiagonal app çoximants are said to occupy
the (n-l,n) positions in the Pade matrix table in contradis-
tinction to the present notation (n,n-l) . Also in [3,pp.493,4943
there are a few (obvious) typographical errors.

~~~~~~~~~~~~~~~~~~~~~~~~~~ __
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IV. Application to Stieltjes Integrals

In this section , we apply the results of Sections 2 and 3

to the siutation where

f(t ,z) (1 + t/z) ’1 . (16)
[• 

~•
• In this event,

I (z a b) = 
~ ~~~~~~ polynomial in z~~ of degree n •

IL j o  14. t j /Z  polynomial in z~~ of degree “ni- i

(17)

E~(z) = 2 
zh~~1 

2n+3 = O(z 2
~~

2), a < < b . (18)
a~÷1,~~ 1(z ~

)

It follows that I~~(z,a,b) is the first subdiagonal Pads

• approximation to I(z,a,b) where f(t,z) is given by (16).

Notice that if a and b are real and z is positive , then

E~(z) is also positive. -

We now show how to get the main diagonal Pads approximation .

From (16),

f(t,z) = 1 - 
~-(1 + ~)1 

, (19)

and so 
• 

-

rb
I(z,a,b) J w(t)dt - z 1I*(z,a,b)

a

rb 1I*(z,a,b) = 
~ 

tw(t)(1 + t/z) dt . (20)
..‘a

We apply our basic quadrature procedure to I*(z,a,b) . In

effect, this is a generalization of Gaussian quadrature for (1)
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and (16) with an additional abscissa t 0 , which goes by the

name Radau. For a discussion of generalized Gaussian quadrature
- 

. with arbitrary additional abscissae , see Luke, Ting and Kemp [2).

For quadrature of (20), let

p (t) = 2: b1, tk , (21)
k=0 ~~

fb tw(t)p (t)p (t)dt = 

~n
6mn (22)

= 0 , I = 0,1,... ,n , (23)

F~~ b
— ______________ F — n+l ,n+l 24- 

ph÷i (t1 1)p
~~(t1.1
) ‘ n 

- 

~~~~

Then

I(z,a,b) = I~ (z,a,b) + V~ (z) , (25)

I~ (z,a,b) = f w(t)dt - 

~~

- 

~! , l+u 1/z
polynomial in z’~ of degree n+l

-1 , C
polynomial in z of degree ni-I -

where V (z) is the remainder and -.

+1 -2 -3V~ (z) = - 

2 2n+3 = 0(z )
b~i-1 ,~~1(z 4)

a <~~~< b .  . (27)

Thus, I~~(z,a,b) is the main diagonal Pads approximation to

I~~(z,a,b) . If  a and b are real and z is positive , then

~ 

‘
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•

I

V~(z) < I(z,a,b) < E~ (z). (28)

Since

(1+t/z)’1 = 

k O  
()r(~/Z)

k + ()r(tfz)r(i+tfz)
_ l 

~ . 129)

I(z,a,b) = 

r~1 c ) k z kf tkl~ct )dt ~ {()r/Zr}f t
Tw(t) (1+t/z)~~ dt,

k=0 - a a - - - (30)
Gaussian quadrature of the integral in (30) leads to an approxi-

mation which occupies the (n,n+r-l) position in the Pads matrix

I : tab1e~. - - 

•• j
That Gaussian quadrature of Stieltjes integrals leads to

Pads approximations is rather well known. Indeed it goes back

to Stieltjes~~5J . In recent times . Pad6 approximations of

Stie]tjes integrals via Gaussian quadrature together

with error analyses have been considered by a number of writers.

• We make no attempt to give a complete bibliography , but see

Allen et al [6,7], Chul [8], Karlsson and Syclow [9] and the refer-

• ences noted in these sources. There is an extensive literature

on Gaussian quadrature for general integrals which we do not quote.

In this connection, see Davis and Rabinowitz [10] and Donaldson - 

:1

and Elliott [ii] . - The latter is especially valuable as it de-

velops a unified approach to quadrature formulas with the error

expressed as a contour integral from which asymptotic estimates

of the error can be deduced. Our approach differs from all

other authors in that we study the error in Pads approximations

by use of (11). We now turn to three examples.

V. Examples -

We treat three cases for which considerable information is

known about their Pads approximations. In what follows, we

make free use of notations and ideas found in my books [2,33 . 



_ _  — - --- —-- -~~~ 
•

8

In each situation we treat the first subdi~gona1 Pads approxi-

• 

• mation only.

Example 1. Consider
.4

- i a-i c-a-i
= 
F(a)r(c-a)J (l+t/z) dt ,

- - 0 (31)

R(c) >R(a) >0 , ~arg(1+i/z)J < i t .

We have [2, v.2, p.31],

(l+t/z)~~ = Z c~ (z)R~~M(t) , a = c-a-i , 8 a-i , (32)

n n+8+l,n+1
c (z) = ~~~ 

2F1 • -l/z , A = ci+ 8+i = c-i , (33)
zit (n+A )~ 2n-fA+i

where R~~’~~ (t) is the shifted Jacobi polynomial . From

[2, v.1, p.237], 
-

n23-A ½ -~~(n+1) 1+ 
-

~~~ A -8- 3/2 -1
c (z) = 

z(n1T) e 
-

~~~ 
( e ) {i + 0(n )} , (34)

(1-e )2

e~~ = 2z + 1 ; 2(z2+z)i - (35)

where ; sign is chosen so that Ie~~I < 1. This is possible for

• all z except -l < z < 0. From [iJ ,

(n) 
= 

F(n+ a+2)F(n+B+2)r(n+X+i) (ni-i) !r(4n+x-’-4)
2n+2 {r(2n+x+2)}2r(2n+A+3)(2n+2)!

= 2~~ (w/2n)
½ { i + O(n 1)} , (36)

(n)g2~÷3 = - 
2(a-$)(n+i)(n+2)(4n+A+4) -‘

Pa- (1 + o’ 
-1

(ii:)— (2n+A+l)(2n+A+3)((2n+3) ‘
I_i

- • We suppose that g~~~2i-~/gg~ 2 = h ( c t ,8 ) f l  + O(n~~)) uniformly

for all r > 1 where h(a,8) depends only on a and B. For the

special cases a = , we have verified this for r 2. But

11111.1 - I - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -- •- ---- ..--- • -•-—-- --- - - - - -_ - - - - -.—_---- ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _
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proof of the general situation seems elusive . From (11) and

(34) - (36) , we find with

- 

- ,

-

• 
- - 

F~~(z) = r (a)~~~ -a) E~~(z) , (37)

• 
- F (z) F(A+i)ize 2 3

~ (i+e )~~~ {1 + O(n’)}
• 

r (a+1)r ( 8÷ 1)2 - (l- e~~ ) 2 8

x{ 1 + (a- 8) e~~~- + A(ct , 8,~~) + 0(n ’))  , (38) -

where A(a ,~~,~~) depends only on a , 8and ~ and is O(e ’2
~ ) .  From

[2 , v .2 , p. 173] (there put a = 1, cv 8 + 1, p = A and to con-

form to the present notation, replace n by n + 1), we have

R = 
F(A+1)wz~ ~~~~~~~~~~~~~~~~~~~~~ + 0(n4)). (39)

r ( a + l) r ( 8+1)2

• Neglecting O(n 1) ternis , we have • 

-

- 
• F (z) {l + (a-B)e~~ + A(a ,8,~~))• 

R
~+~
(z) 

= (4ze )8(l+e )U (l-e )’
~~~ 

(40)

If z is suff ic ient ly  large so that e~~ is suff ic ient ly  small , then

F~ (z) •

_ 

• {i + (a-8)e~~ + A(cz ,8 ,~~) } • (41)R~÷1(z) ij + (a-8)e~~ + ½e
’2

~~{(a-8) 2 - A }+ O(e 3
~ ) }

• and so within  the l imitat ions noted , the two d i f fe ren t  error

anal yses give the same r esul t .

Example 2. We consider the complementary incomplete gamma function

-z \) 1 -t VdF(v , z) = 

~(1
1
v) J e

(l+~ /Z)  
. (42)

Considerable in format ion  on the main diagonal  and f i r s t  sub-

diagonal Paclé approximat ions  are known . See 12 , 3J where asymp-

totic results  are given to show that these approximations con-

Verge , a l though the convergence is ra the r  slow . Formally,  at

• i- - - — •- •_ - • •— .-••— -_ _ •._ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
__ _ _ • -_—.——-_ — _- --— C -
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least , we have [2, v.2, p.i8],

( l+ t/ z) 4 
= E k ( z )L~~ ’~ (t)  , ( 4 3)

• n 0

- •  

k~~(z) = {F (n+ l V ) ) 1G~~~~(Z~ 
~~~ f l )  f l !Z~~

VU(n+i~ v ;l~ v; z ) ,  (44)

• 

- 

L~~
’
~~ (t) = {( i_ v ) ~~/n!, }1F1( -n ; l _ ~, ;t )  . (45)

Here (45) is the general ized Laguerre polynomial . From

[2 , v.1, p .264 ] ,

½v- ¼ t /2  1Ln~
V (t)  = 

nt  [1 + O(n ) )

x cos{2(nt)½ + i r( ½v- ¼) + O(n~~ ))  , (46).

with t fixed and n -‘ ~~~. Also from [2, v.2 , p.200] or from

the work of Wimp [12],

k~(z) = (wz)½ (n/z)½ \¼ eZhI2exp{_2(nzy~}{1 + O(n ½) }

z f ixed , ( arg z~ < ii - 
~~, c > 0 , n . (47)

Thus under the conditions stated

L
~~
”
~
(t)k

~
(z) n~~O(exp{_2 (nz)½J) , (48)

and so (43) converges , though the convergence is rather slow .

However , the convergence is not uniform in 0 < t < as can be

deduced from a known asymptot ic  expansion for the generalized

Laguerre polynomi -i l for large n which holds uniformly-for

large t .  See Wyman [13]. Hence for the example (42), our

method of error analys is  f a i l s .

Example 3. We now consider a form related to the incomplete

gamma func t ion ,

_ _ _ _ _  -•---- ---
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ry + 1OD 
~~~~~~~~~~~ 

- i
1F1( l ;A i - 1; - z )  = { F (A + l ) / 2 i r i )J e~ p (i i-z/p) dp

Y - i~
y > O ,R ( A )  > - i ,~ arg(i+z/y)~ < ~1.  (49)

-

- This example is important since it illustrates use of Gaussian

quadrature and our technique of error analysis for the inversion

of Laplace t ransforms.  From [2 , v .2 , p.7 1 , we have

(i~z/p)
1 E v (z)R (A,p) , (50)

n=0 I~ fl

v (z) = {z’1u
~
(z)/(n+A)

~~
} , u (z)  = e~~ 1F1( n + A ; 2 n + X + 1 ; z )  .; (51)

R~ (A ,p) = 2 F0 (-n ,n +A ;p1) , (52)

The la t ter  is called a Bessel polynomial and for properties of

same needed in our present study , see Li , 2 , 3]. From Luke [14] ,

we have

u ( z ) = e eZ (2n+A+l ) {1 + 
z 2 (n+1) (n+X ) 

2 + O ( n 3
) }  . (53)

I’ 2 ( 2 n + A + 2 ) ( 2 n + X+1)

From . [1] ,
(n ) ( -)~~~

1F ( n + A + i ) ( n + 1 ) !F ( 4 n + X+4 )g2~~2 {r(2 n + x + 2 ) } 2 r(2 n+x +3)

= ~~~fl+i 2 2n _ X + 3 / 2 ~ _ A ~ 1 + 0(n1))  , (54)

• (n)g 2~ ÷3 
= - 

4( n+1) 2 (4 n +X ~-4) 
= - 4 (1 + o -1 55(n) ( 2 n + A + i ) ( 2 n + A + 3 )  (n ) ( )

g2~~2 
-

From (51) and (53),

V 2~~ .3 
= 

z ( 2 n + X + 2 ) e  / (4 n + 5 ) ( 4 n + A + 7 )  
+ 0(z2/n2 ) 56v 2~~÷2 (4n+A+4)(4n+A+5)

We suppose that
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(n)
f {i + 0(n1))

- (n) 
~ 

r ,n
2n+2 2n+2

— 
(_ ) r ( z ( 2n + A+ 2 f \ r

- •

. 

~r,n 
— r~ \~4n+X+S~~) ‘ C )

uniformly i n r , r > 1. This is true for r = 1 in view of

(55 ,56) . Using a result in [13 , we can verif y (57) when A I

for r = i ,2. However , proof of the general statement appears

elusive. If U~ (z) is the error in the f i rs t  subdiagonal 
—

Pads approximation for the left hand side of (49), then ”from

(11), (51-54) and (57) , we find - 
-

U (z ) (~ )fl+l wF ( A + 1) z 2It +Ze~
Z F( n+A+ 1) (n+ 1) !{l+0(n~ l) } , (5 8)

• 
- 2 4’

~~
2
~~

3F( n+ 1+A/ 2 ) {F(n + 3/ 2 +A/ 2 ) } 2 F( n+2 +A / 2)

since - 
- 

-

~~~~~~~~~~~~~~~~~~~~~~~~ f = 1 , (59)
- r 0  r,n

and (58) is precisely the result g iven in [2 , v .2 , p.191],

where to conform to our present notat ion ,we must repl ace n

and V by n + 1 and A respectively, and set a 1.

VI Extension to Generalized Stieltjes Integrals

It is of interest to indicate an extension of the above

analyses to the case where

f ( t , z) = (1 + t/ zY b 
(60)

where b is arbitrary so long as the integral (1) has meaning.

Then/the quadrature formula  (8) , the summation part  holds save

that f(t.,z) is now computed from (60), since the weights ~~~~
are ind ependent of b . Now in the expression for the error, see

(7), (11), (12) and [i], the coefficients ck depend on b , but



- ~~— - -

13

but the coeff ic ients  ~~~~~~ depend only on the system of orthogonal .

polynomials and so are independent of b. The expansion (60) in

series of shifted Jacobi polynomials and in series of Bessel poly-

nomials after the manner of the corresponding expansions for b 1

as in Examples 1 and 3, respectively , are readily deduced from re-

sults given in the cited references. With such data in hand, (38)

and (58) are easily generalized.

For a general izat ion of Example 1, we have

r a-i c-a- i
= I’( a ) r(c-a )J0  b dt , (61) -

valid under the same conditions as for (31).

ALet F~ (z,b) be the error in the Gaussian approximation for (61)

such that when b = 1 we get the error in the first subdiagonal

• 
Padé approximation , see (38). Then under the same assumptions

which led to (38) , we f ind

Fn (z
~ b)/ F n (z~

i) = {r(b) r 1-{2 z ( z 2 +z) 4
~}’~
1{1 + O(n ~~ ) }  . (62)

Similarly , for a general izat ion of Example 3, we have

A 1 b
= {r(A+1)/2iri}J 

-
. 

e~ p~ (li-zip) dp , (63)
Y i~

valid under the same conditions as for (49) . Now let U~ (z ,b) be

the error in the Gaussian approximation for (63) such that when

b = 1, we obtain the error in the f i r s t  subdiagonal Pad6 approxi-

mation , see (58) . Then under the same assumptions which led to -

(58) , we get

U~ (z ,b ) / U ~ (z , 1) = ( ( 2 n ) bh /r (b ) }{ 1  + 0(n~~ ) }  . (64)

In each example , the dependence of the error on b is quite

weak .

A _ _ _
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